Machine Learning Question

Learning Goal: I’m working on a machine learning question and need an explanation and answer to help me learn.

Overview

This assignment will help you get hands-on experience training convolutional neural networks in Keras and using them to make predictions. This will deepen your understanding of neural networks. You will then gain practice considering the ethical and legal implications of this type of technology. This will support your work in Project One, which is due in the next module.

Prompt

Access the Virtual Lab (Apporto) by using the link in the Virtual Lab Access module. It is recommended that you use the Chrome browser to access the Virtual Lab. If prompted to allow the Virtual Lab access to your clipboard, click “Yes”, as this will allow you to copy text from your desktop into applications in the Virtual Lab environment.

  1. Once in the Apporto environment, create a new Jupyter Notebook and configure it using the following naming convention:

    <YourLastName>_<YourFirstName>_Assignment3.ipynb

    Thus, if your name is Jane Doe, please name the submission file “Doe_Jane_Assignment3.ipynb”.

    For information on how to navigate the Jupyter environment, review the Jupyter Notebook in Apporto (Virtual Lab) Tutorial.

  1. Read through the “Recognizing CIFAR-10 images with deep learning” example on pages 84–94 of Deep Learning with Keras. Copy the code into your Jupyter Notebook, including the code for a deeper network and data augmentation in your model. Run the code to build a convolutional neural network model that includes a deeper network and data augmentation.

    Note: More information about the training and test data sets can be found in the CIFAR-10 and CIFAR-100 Datasets repository.

  1. The algorithm you worked to train can be used to distinguish more realistic images than the hand-written digits example from the previous module. While distinguishing between animals or vehicles may not pose a serious ethical dilemma, it’s important to consider what other types of images an algorithm such as this could be trained on. For example, could such an algorithm eventually be used to distinguish people’s faces? If so, what are the ethical and privacy implications? Create a Markdown cell in your Jupyter Notebook after your code and its outputs. In this cell, analyze the ethical and privacy implications of the algorithm you just created. You are expected to include resources to support your answers, and must include citations for those resources.

Specifically, you must address the following rubric criteria:

  • Configure the Jupyter Notebook correctly and use the proper naming convention.
  • Build a convolutional neural network model using a deeper network and data augmentation for CIFAR-10 image data.
  • Explain how this algorithm could result in ethical and privacy concerns if it were trained on different sets of images.

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more